
PANIMATION STUDIO

WELCOME TO PANIMATION STUDIO

Panimation Studio is a Unity3D tool for creating procedural animations.

Panimation Studio is a node-based editor which interpolates so called poses of your
model to create various animations which seamlessly blend together. This allows you
to create complex procedural animations in only a few minutes, directly in Unity3D,
without the need of using a 3D modeling software.

BENEFITS
• create complex animations without the need of using a 3D modeling software

• no need for motion capturing or cumbersome key frame animation editing - only
a few poses are needed to breathe life into your character

• procedural animations let your character dynamically react to the environment

• adjust your poses in real time – while the animation is running – to precisely fine
tune your animations

WHERE DID THE INSPIRATION FOR PANIMATION STUDIO
COME FROM?

The inspiration for Panimation Studio did come from David Rosen. He used this
technique to create the amazing game Overgrowth.

http://www.wolfire.com/overgrowth

Please have a look at his GDC talk to get some more ideas on what you can achieve by
using Panimation Studio:

https://www.youtube.com/watch?v=LNidsMesxSE

http://www.wolfire.com/overgrowth
https://www.youtube.com/watch?v=LNidsMesxSE

MAIN CONCEPT

Yellow in- and outputs are poses.

Blue in- and outputs are signals.

A pose is like a static snapshot of your character at an extreme posture. In the
example above, we have “pose input 1” where the left leg is in the front, and we have
“pose input 2” where the right leg is in the front. Interpolating over time between the
two poses leads to an animation where the character is running.

A signal is simply a single floating point number. Most of the time (but not always) a
signal has a value between zero and one. In the example above we have two “Pose
Input” nodes, which are interpolated in the “Pose Lerp” node, depending on the signal
of the “Time” node. If the signal has a value of 0, then “pose input 1” will be used. A
value of 1 means “pose input 2” will be used. A value of 0.5 leads to an exact
interpolation between the two poses.

POSE INPUT 1POSE INPUT 1 POSE INPUT 2POSE INPUT 2

POSE POSE
INTERPOLATIONINTERPOLATION

EDITOR OVERVIEW

• Right click your mouse to create a new node

• Right click your mouse on a node to delete it

• Left click your mouse on an in-/output, then left click again on another in-/output
to create a connection

• Right click with your mouse on an input to delete a connection

• Click and hold your left mouse button to drag a node

• Click and hold your middle mouse button to move all nodes

QUICK START

1. Import Panimation Studio and the model you want to animate into Unity

2. Create a new scene and drag your model into the scene, then name it
“MyCharacter”. If your model has an Animator component attached, you can
safely remove it as it is not needed.

3. Drag and drop the “MyCharacter” game object from the scene into your project
folder to create a prefab. Name the prefab “Standard Pose”.

4. Duplicate the “Standard Pose” prefab and name the new prefab “Pose Left”.

5. Duplicate the “Standard Pose” prefab and name the new prefab “Pose Right”.

6. Double click “Pose Left” to open the prefab edit mode1. In it’s hierarchy, search
for the upper left leg transform and rotate it as you wish.

7. Double click “Pose Right” to open the other prefab in prefab edit mode. In it’s
hierarchy, search for the upper right leg transform and rotate it as you wish.

8. Ok, now we have our two poses set up and we are ready to create the first
panimation. To do so, right click your project folder, then choose Create →
Panimation

9. Double click the new panimation file to open the panimation editor.

10.In the editor, you will see a node called “Apply Pose”. This node is always
present and can not be deleted. Drag and drop the “MyCharacter” scene game
object into the corresponding field of the “Apply Pose” node.

Attention: each time you restart unity (or reopen the panimation editor), the
scene game object has to be reassigned to the “Apply Pose” node. This is not a
bug and is caused by technical reasons on how unity handles serialized objects.

11.Right click the editor and create a new “Pose Input” node. Drag and drop the
“Pose Left” prefab into this node.

12.Right click the editor and once more to create a new “Pose Input” node. Drag
and drop the “Pose Right” prefab into this node.

13.Right click the editor and create a “Pose Lerp” node.

14.Connect the yellow dot on the right side of each “Pose Input” node to the yellow
dots on the left side of the “Pose Lerp” node.

15.Connect the yellow dot on the right side of the “Pose Lerp” node to the yellow
dot on the left side of the “Apply Pose” node.

1 Prefab edit mode was introduced in Unity version 2018.3 (see
https://docs.unity3d.com/Manual/EditingInPrefabMode.html). It has the huge advantage that you can manipulate
your pose in real time, while the animation is running. If you are using a version below, you have to drag and drop
your prefab into the scene, then manipulate the pose and then select assign to apply the changes to the
animation.

https://docs.unity3d.com/Manual/EditingInPrefabMode.html

16.It should now look the same as in the following image:

17.(OPTIONAL) Play around with the slider on the “Pose Lerp” node. You should
then see the “MyCharacter” game object interpolating between the two poses in
the scene view.

18.Right click the editor and create a “Time” node.

19.Connect the blue dot on the right side of the “Time” node to the blue dot of the
“Pose Lerp” node. The “MyCharacter” scene game object should then
continuously interpolate between the two poses. If you want, you can play
around with the speed value of the “Time” node and see how it influences the
animation.

Here is how the final result should look like:

Congratulations, you have successfully created your first simple panimation!

Of course, the current animation doesn’t look very pleasing. There are a lot of things
we can do to improve it. Please continue with the next chapter to learn how to improve
the animation.

Furthermore, the animation is currently only running in the editor. As soon as you start
the play mode, the “MyCharacter” scene game object doesn’t animate anymore until
you leave play mode again. To be able to run the animation in play mode, a few
additional steps are required, which you will learn in the chapter “Quick Start - Play

Mode”.

QUICK START – IMPROVING THE ANIMATION

1. The “Time” node creates a signal which smoothly transitions from 0 to 1 and
then jumps back to 0. This jump is causing an ugly effect in our animation. To
overcome this issue, create a “Ping Pong” node and put it between the “Time”
and “Pose Lerp” node. The animation now continuously transitions back and
forth.

2. The two poses are interpolated linearly. Linear interpolations don’t look natural,
so let’s change this. Create an “Easing” node and put it between the “Ping
Pong” and “Pose Lerp” node. The default value for the “Easing” node is linear,
so this is why the animation still looks the same. Change the easing parameter
of the new node from “Linear” to “Sine Ease In Out”. Now it looks much better,
right? Take your time and experiment with different easing values to see how
they affect the animation.

This is it, well done! The final result should look like this:

QUICK START – PLAY MODE

If you start the play mode in Unity, the animation stops. To be able to run the
animation in play mode, we have to attach a “Panimation Controller” component and
write a little script. Don’t be afraid, it’s just a few lines of code. So let’s get started:

1. Add the “Panimation Controller” component to your “MyCharacter” scene game
object.

2. Drag and drop your panimation file (created at step 8 of the quick start guide) to
the corresponding slot of the “Panimation Controller” component.

3. Create a new c# mono behaviour script, name it “MyCharacterBehaviour.cs”
and add it as a component to your “MyCharacter” scene game object.

4. Copy the following script:

In the Awake() function, we get a reference to the “Panimation Controller”
component we added in step 1. Then in the Update() function, we simply call
the components UpdatePose() method and pass Time.deltaTime as an
argument. This call will then update and apply the animation to your character
in play mode.

Well done, you are now able to run your animation in play mode as well.

NODE TYPES

SCRIPTABLE VALUE
This node allows you to input a signal trough scripting.

E.g. if you have a running animation for your character, then you can use this node to
input the characters rigidbody velocity magnitude. This allows you to then adapt the
speed of the running animation to the velocity. Please have a look at the Demo #2 in
the Panimation Studio _DEMOS folder to see how it’s done.

To assign a value, you must first assign a unique name to the name field of the node.
Then in your MyCharacterBehaviour component (see chapter Quick Start – Play Mode),
you have to call the SetScriptableInput() method and pass the name and the value as
arguments (right before calling UpdatePose()) as follows:

NORMALIZE RANGE
This node manipulates an incoming signal and then outputs the manipulated signal.
The manipulation is identical to Unity’s Mathf.InverseLerp() method (see
https://docs.unity3d.com/ScriptReference/Mathf.InverseLerp.html).

E.g. you have a running animation for you character and a “Scriptable Value” node
which inputs it’s velocity, where the velocity may go from 0 to a value of let’s say 5
(which is the maximum velocity your character can reach). Having a signal between 0
and 5 is not preferable to be used to interpolate poses. By attaching a “Normalize
Range” node and set it’s min parameter to 0 and it’s max parameter to 5, it will output
a signal between 0 and 1, which can then be used to interpolate an idle and a running
pose, or set the speed of the running animation and so on.

Pro tip: attach two “Normalize Range” nodes to a “Time” node. Set the min max
parameters of the first node to 0 and 0.5, and the ones of the second node to 0.5 and
1. This will then lead to the first node signal going from 0 to 1, and as soon as it
reaches 1, the signal of the second node will start going from 0 to 1. This trick allows
you to create sequential animations.

THRESHOLD CALLBACK
This node invokes an action (assigned by a script) each time the incoming signal
crosses a threshold. You can set the action to be invoked only when the signal is
increasing or decreasing or in both cases.

You can add a listener in the Start() function (never do this in the Awake() function, as
it will throw an error) as follows:

https://docs.unity3d.com/ScriptReference/Mathf.InverseLerp.html

E.g. if you are interpolating two running poses, you can attach this node to the signal
and set a threshold of 0.5. Then in your script, assign the Play() function of a footstep
AudioSource as a listener to the node (see image above). Your running animation will
then play the footstep audio each time the feet touches the ground.

TRIGGER
A trigger node can be de-/activated by script. It outputs a signal, which when activated
linearly increases from 0 to a value of 1 and then stays at 1 until the node is
deactivated. Vice versa for deactivating the node, where the signal decreases from 1
to 0. You can also adjust the transition speed. To de-/activate the node, give it a unique
name and then call the following method by script:

The trigger node is useful to change the state of your character. E.g. it can be used to
enter a crouching mode, where your character then blends from a standing/idle
animation to a crouching animation. Please have a look at the DEMO#2 example to
see this in action.

POSE INPUT
You can assign a pose to this node which will then be output. The pose is a game
object prefab of your model.

Important: The assigned game object or one of it’s children must have a
SkinnedMeshRenderer component attached. Also, please keep in mind you can only
assign prefabs from your project folder. Scene objects are not allowed.

POSE LERP
This node interpolates/blends two incoming poses depending on an incoming signal
and then outputs the result.

APPLY POSE
This is the final node of every animation. It applies the final pose to your model. This
node must exist exactly once, therefore it can’t be created or deleted.

In play mode, the “Panimation Controller” component will automatically assign the
scene object - which the component is attached to - to this node.

In editor mode, you have to manually assign a scene object of your model to this node.
This will then allow you to preview your animation in the editor. In contrast to the
“Pose Input” node, only scene objects are allowed.

Important: E ach time you change the scene, restart Unity or reopen the Panimation
editor, a scene object of your model has to be reassigned to this node - if you still want
to be able to preview your animation in editor mode.

TIME
This node produces a linear signal that goes from 0 to 1 and then jumps back again to
0. You can either set a constant speed value in the editor or you can attach another
signal which then acts as the speed value.

EASING
This node manipulates an incoming signal and then outputs the manipulated signal.
This is useful to change a linear signal into a more natural looking signal like e.g. sinus
curves. Please have a look here to see how the different easing types manipulate your
signal: https://wiki.sparrow-framework.org/_media/manual/transitions.png

CURVE
This node let’s you create an animation curve, which manipulates an incoming signal
and then outputs the mapped value.

PING PONG
This node changes a signal which permanently increases and then jumps back again to
a lower value (like e.g. the “Time” node), into a signal which constantly increases and
then decreases instead of jumping.

MATH
This node adds or multiplies a constant value (or another signal) to an incoming signal
and then outputs the result.

https://wiki.sparrow-framework.org/_media/manual/transitions.png

	Welcome to panimation studio
	Where did the inspiration for Panimation Studio come from?
	main concept
	Editor overview
	Quick start
	Quick start – improving the animation
	quick start – play mode
	Node types
	Trigger
	Curve

